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ABSTRACT 

This paper describes the MPC (Microprogrammed Controller) Concept used at Sperry Univac Defense Systems Division 
to implement real-time computer emulations. It discusses the concept and reasons for microprogrammed emulation and the 
basic MPC approach. Enhancements developed for the MPC and their impact are also discussed. 

INTRODUCTION 

Microprogramming has been a control logic implementa- 
tion technique that conceptually has been available to designers 
since it was first introduced by Wilkes in the early 50's.[1] 
However, it was not until the mid-60's when the technique 
became popular and in widespread use.J2 ] 

Emulation of one computer system by another computer 
system conceptually has also been a designer's tool for many 
years. Some "emulators" are hardwired copies of early ma- 
chines.[3] Other emulators consist of "software packages" 
which simulate a specific computer system.[ 4] 

Recently, the use of microprogramming techniques to 
implement an emulation of an alternative computer system has 
been a prevelant emulation technique. [5,6,7,8,9,10] This paper 
discusses the concept, evolution, and use of the MPC 
(Microprogrammed Controller) concept used at Sperry Univac 
Defense Systems to implement computer emulations. 

microprogramming  (non-coded microinstructions), hybrid 
schemes (using two levels of microcode: one vertical and one 
horizontal), and various combinations of the above techniques. 
The MPC can be viewed as a vertically microprogrammed 
machine with the ability to call horizontally encoded subrou- 
tines which are supported by easily tailorable hardware. This 
concept is at the same time elegant, yet very hardware cost 
effective. 

WHY MICROPROGRAMMING? 

Microprogramming is a technique for implementation of 
the control logic of a digital system. Digital systems are made 
up of registers and networks interconnected to perform a given 
function. In hardwired machines, some registers are addressable 
because they may be directly specified in an instruction. 
Adders, shift networks, and data busses are not generally con- 
trolled by an instruction. The assembly language programmer 
may not even be aware that this hardware exists. 

To date, this concept has been applied to, and emulators 
built for, over 20 alternative repertoires or alternative perform- 
ance levels of a specific repertoire (ranging from the 
AN/UYK-20(V) to the Honeywell DDP-24). For any given 
repertoire we have produced a variable number of machines. In 
some cases, we have built only one copy of a specific emulator; 
in other cases, we have produced over 700 copies of a specific 
emulator. 

In the literature, various designers have argued for vertical 
microprogramming (encoded microinstructions), horizontal 

Microprogramming normally treats all registers and net- 
works as addressable within the microinstruction format. The 
control logic therefore becomes the microinstruction sequence. 
Timing is controlled by microinstruction sequences. 

Microprogramming must be intimately concerned with the 
digital hardware to be efficient. The microinstruction format 
will be heavily influenced by currently available semiconductor 
integrated circuits or the design of custom semiconductor 
devices. 
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Emulation becomes the process of writing a microprogram 
which, when run on a microprogrammed computer, produces 
the same results as the original machine. Generally, most 
authors ignore timing issues when discussing emulation. How- 
ever, in a real-time environment, timing considerations must 
also be considered. 
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There are a number of advantages to implementing an 
emulator using microprogramming: 

1 ) flexibility, 
2) ease of alteration, 
3) provides a basic building block which can be altered 

to emulate other computers, 
4) simplifies logistics, 
5) lower recurring and nonrecurring costs, 
6) can take advantage of semiconductor advances, and 
7) shorter development time. 

Classical microprogramming (horizontal: non-encoded) 
usually dedicates bits in the instruction for direct control over 
registers and logic networks; e.g., a register having parallel load 
capability would have a bit within the instruction word reserved 
for controlling this specific function. This approach generally 
leads to wide microinstructions. 

Firmware microprogramming (vertical: encoded), on the 
other hand, takes the opposite approach; i.e., functions are 
encoded. The firmware approach closely resembles conventional 
hardwired design techniques. A "narrow" instruction word is 
implemented with encoded fields in the microinstruction 
assigned to specific functions; e.g., Load, Add, Subtract, or 
Shift. In fact, many classical microprogramming people do not 
consider firware as a microprogramming approach at all, but 
rather an extremely simple computer. The hybrid approach 
combines the two approaches for memory and execution effi- 
ciency with one vertical microinstruction pointing to one or 
more horizontal microinstructions. 

The main advantages of vertical microprogramming are: 

1) efficiency of micromemory use (low cost) 
2) only useful functions are available, 
3) ease of programming, and 
4) ease of software-support tool generation. 

The main advantages of horizontal microprogramming are: 

1) parallelism, 
2) high performance, and 
3) low number of instructions necessary to emulate 

another computer's instruction. 

The hybrid approach leads to the advantages of both verti- 
cal and horizontal schemes. 

Further, it is possible that a single microprogrammed con- 
troller can emulate many different architectures with suitable 
microcode changes. 

THE MPC CONCEPT 

The concept of the MPC (Figure 1) is quite simple. It 
revolves around a standard building block: the Micropro- 
grammed Controller. The MPC (Figure l, Figure 2, Table 1) is 
used in the AN/UYK-20. This is a simple, vertically encoded, 
register-oriented machine. This provides the advantages of low 
cost and flexibility. Specific microinstructions can point to a 
second-level microinstruction, which is analogous to an instruc- 
tion which acts as a nanoinstruction would act; however, it acts 
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Figure 1. Functional Architecture 

359 



15 14 13 12 11 10 

M I O U 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 I 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

8 7 6 5 4 3 2 1 0 I 
EMULATION POINTER ADDRESS ONE'S COMPLEMENT 

CONTROL FUNCTION FROM EB1 OR EB2 (EMULATE BRANCH 1 OR 2)**  

RR UNARY -- MODIFY ECW POINTER BITS 4 - 1  BY M* - NO OVERLAP** *  

RR NO OVERLAP 

RR UNARY -- MODIFY ECW POINTER BITS 4 - 1  BY M* - OVERLAP 

RR OVERLAP 

RK UNARY - MODIFY ECW POINTER BITS 4 -1  BY M* - NO OVERLAP - 

BRANCH 1 TO INTERIM SEQUENCE 

RK NO OVERLAP - BRANCH 1 TO INTERIM SEQUENCE 

RK UNARY - MODIFY ECW POINTER BITS 4 -1  BY M* - OVERLAP - 

BRANCH 1 TO INTERIM SEQUENCE 

RK OVERLAP - BRANCH 1 TO INTERIM SEQUENCE 

RI INHIBIT NEXT INSTRUCTION WRITE 

RI ENABLE NEXT INSTRUCTION WRITE 

UNDEFINED 

UNDEFINED 

RX INHIBIT NEXT INSTRUCTION WRITE - BRANCH 1 TO INTERIM SEQUENCE 

RX ENABLE NEXT INSTRUCTION WRITE -- BRANCH 1 TO INTERIM SEQUENCE 

RX INHIBIT INDEXING - INHIBIT NEXT INSTRUCTION WRITE - BRANCH 1 

TO INTERIM SEQUENCE 

RX INHIBIT INDEXING - ENABLE NEXT INSTRUCTION WRITE - BRANCH 1 

,TO INTERIM SEQUENCE 

OPERAND MEMORY MODE 

READ (FULL WORD) 

WRITE (FULL WORD) 

READ ODD WORD 

WRITE ODD WORD 

SPLIT CYCLE (i.e., READ, MODIFY, WRITE) 

WRITE 0 

READ THE BYTE SPECIFIED BY BIT 15 OF THE CONDITION REGISTER 

WRITE THE BYTE SPECIFIED BY BIT 15 OF THE CONDITION REGISTER 

*M ~ ONE'S COMPLEMENT OF M 

**EB1 AND EB2 CONTROL ACCESS TO 

INTERIM ROUTINES 

* * *RR,  RK, RI, RX ARE INSTRUCTION 

ADDRESS FORMATS 

Figure 2. Emulator Control Word 

more like a subroutine. Further, this second-level instruction 
has as its goal the performance of the functions which are speci- 
fic and unique to an architecture which is being emulated. For 
this reason, this portion of the machine is known as the emula- 
tion adaptor. Some functions of the emulation adaptor may be 
hardwired. Typical functions performed by the emulation 
adaptor include format decomposition, status setting, control, 
and interpretation, operand fetch according to memory mode 
designation, etc. The emulation adaptor could be 1 ) built from 
programmable logic, 2) built as a MPC with tailored firmware, 
etc. We have chosen (to date) to build our emulation adaptors 
from hardware due to speed considerations and the fact that 
generally we are attempting to emulate only a single architec- 
ture. 

The microinstruction repertoire is given in Table 1. The 
ECW (emulation control word) format is shown in Figure 2 (for 
the AN/UYK-20). The emulate microcommand causes an ECW 
to be read and its specified conditions to be met. Thus, the 
sequence of events is: 

<Jnstruction> 
is fetched and interpreted by 

<User> 

<Emulation Adaptor> <Emulation Tailoring> 
provided for emulation by hardware design- 
er uses "interim sequences" to decompose 
the instruction, fetch operands, and pre- 
pare the instruction for transmittal to the 
MPC for execution 

<~dPC> <Register Oriented Machine> 
programmed by microcode (hardware) 
designer to act upon data placed into MPC 
scratch pad registers by the emulation 
adaptor 

<Result> <User> 
answer from scratch pad registers is placed 
into appropriate positions in emulation 
adaptor 

The interim sequences are sequences (possible hardwired) 
which provide for operand fetch, format decomposition, etc. 
Obviously, the most efficient design will minimize the changes 
required to an emulation adaptor to change it from an 
emulator of machine A to emulation of machine B. 
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Further,  the  ECW may  be viewed as either: 

1 ) A horizontal microinstruct ion,  
2) An extension of  the vertical microinstruct ion,  or 
3) A hardwired interrupt-oriented aid to the vertical 

microinstruct ion which calls in the emulat ion adaptor  
hardware to perform emulat ion specific functions.  

Table 1. Microinstruction Repertoire 

Instruction Format 

15-12 11-8  7 - 4  

Description 

3 - 0  

F = 00 D S M 

F = 0 1  X 

F =02 

F =03 

F = 0 4  

F = 0 5  

F = 06 

F = 07 

F = I 0  

F = I 1  

F=  12 

F = 1 3  

F = 1 4  

F = 1 5  

F = t 6  

F = 1 7  

S M 

S M 

S M 

S M 

S M 

S M 

K 

K 

K 

D [ K 

FII K 

S [ M Fll 

FII K 

D S [ M 
I 

Transfer 

Unconditional 
Branch 

Add $2 

Shift 

Add SI 

Subtract 

Logic 1 

Logic II __ __  

Add Constant 

Subtract Constant 

Transfer 
Constant to DI 

Transfer 
Constant to D2 

Branch 

Micro Control 

Micro Repeat 

Emulate 

Definition of fields 

F Function code 
FII Subfunction code 
D Destination designator field 
S Source designator 
X Branch address designator 
M Sub-function or modifier designator 
K Constant 8-bit absolute value or subfunction code 

Al though it is possible to make  the emulat ion adaptor  and 
the MPC micromemory  accessible to the user, to date we have 
not  provided this capability in our machines  since the ECW and 
micromemory  are built from read-only memories.  

The previous discussion assumes no overlap o f  micro- 
instructions or parallelism in the MPC. In the MPC If, for 
example,  the microinstruct ions are executed in a three-stage 
pipeline. Further,  the "emula te  s tar t"  command  is the  "last 
ins t ruct ion"  o f  a macro and it causes the  nex t  macro to be read 
and its interim sequences to be started. Thus  in general the  
microcode for a typical macroinstruet ion takes the  form: 

1) Interim Sequences 
( i f any : spec i f i ed  by EB1, EB2) 

2) Vertical Microcode 
3) Emulate  Start 

(fetches nex t  macro)  

parse instructions:  
obtain operands 
execution 
start n e x t m a c r o  

M P C E N H A N C E M E N T S  

Since the  development  o f  MPC I we have developed an 
enhanced version o f  the  MPC (known as MPC II). In addition, 
LSI versions o f  the  MPC II (MPC Ill and MPC IV) are 

available. The MPC II instruct ion format  has some minor  modi- 
fications made  to it to obtain the MPC III and MPC IV architec- 
tures. MPC IV and MPC II are identical (functionally)  al though 
the hardware structure is different. MPC III has more  bits in the 
F and M (funct ion and funct ion modifier)  fields due to the 
necessity to provide more  funct ion bits to control the AMD 
2901 chip. The characteristics o f  these MPCs are summarized in 
Figure 3. The enhancements  made to MPC I were based upon 
considerable analysis work which is summarized in the  follow- 
ing paragraphs. 

The emulat ion adaptor  concept  is the primary feature 
which has yielded a decided performance edge to the  MPC in 
contrast  to other  emulat ion approaches.  The emulat ion adaptor 
is an address generator which converts the  MPC into an inter- 
rupt-driven system. Its primary funct ion is to dynamically 
moni tor  the emulated machine  state and produce starting 
addresses o f  microinstruct ion subrout ines  which implement  the 
desired functions.  

NUMBER OF BUSES 
NUMBER OF MICROINSTRUCTIONS 
MICROINSTRUCTION LENGTH (BITS) 
CONTROL STORE TYPE 
MAXIMUM CONTROL STORE SIZE 
MICRO-NESTING LEVELS 
ARITHMETIC TYPES 
HARDWARE REQUIRED 
CIRCUITS USED 

MPC I MPC II MPC III MPC IV 

2 4 3(2) 3 
16 16 16 16 
16 36 40 36 

ROM ROM/RAM ROM/RAM ROM/RAM 
4 K X  16 4 K X 7 2  4 K X 8 0  4 K X 7 2  

1 4 4 4 
2'S, I 'S 2'S, 1'S 2'S, 1 'S 2'S, 1 'S 

REFERENCE SAME AS MPC I 2/3 MPC 2/3 MPC 
GENERAL GENERAL AMD 2901, PLA'S, 

TTL ECL 10K AMD 2909, LS 181 ALU 
LSTTL PARTS SLICE, AMD 2909, 

AMD 2914, 
LSTTL PARTS 

Figure 3. MPC Attr ibutes  
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In the MPC, the emulation adaptor is probed by means of 
a special microinstruction which serves as a trigger to generate 
the address of the next routine to be entered. This particular 
function is not totally unique to the MPC; however, few 
machines carry this function to the extent that the MPC does. 
One feature of the MPC which is unique is the supplementary 
control which is supplied by the emulation adaptor. Such things 
as main memory cycle modes, interim-sequencing and address- 
generation characteristics, general register selection, macro- 
i n s t ruc t i on  overlapping, and condition code setting are 
accomplished and interpreted through the emulation adaptor. 
In effect, the emulate instruction temporarily transfers machine 
control to the emulation adaptor which then issues control sig- 
nals to the rest of the machine in addition to supplying the 
branch address of the next microinstruction routine. 

The major improvements incorporated into the MPC II 
reflect the extensive use of the emulate instruction, which is 
deleted as a special instruction and encoded as a field in every 
microinstruction, as well as the addition of facilities to relieve 
the following limiting characteristics of MPC I: 

1) limited register addressing 
2) limited accumulator selection 
3) limited conditional branch capability 
4) difficulty of introducing constants 
5) lack of parallel control capability. 

The main differences between MPC II, MPC III, and MPC 
IV and MPC I can be seen by examining the MPC II instruction 
format (Figure 4) and the MPC I instruction format (Table 1). 
Both machines have function (f) and function modifier capabili- 
ties (M). The instruction repertoires (Figure 4 and Table 1) 
differ mainly in that the emulate command (MPC I) has become 

a field in the MPC II (E-field). Further, the MPC II has added 
instruction parity (P) and an overlapped even/odd microinstruc- 
tion branch capability (B). The B Field allows the microcontrol 
store to be viewed as 4K x 32-bits or 8K x 36 bits, and this 
feature can be exploited in microinstruction branching during 
overlapped operations. A trigger field (T) was also added so that 
specific conditions and/or functions can be programmed for use 
in obtaining microinstruction parallelism; e.g., it is conceivable 
to initiate memory during an add microinstruction. An addi- 
tional source bus (SX) and a qualifier (SXE) were added to MPC 
II for flexibility reasons. Additionally, a number of microsub- 
routine nesting levels were added to MPC I to facilitate more 
efficient microprogramming. The resulting MPC II block dia- 
gram is shown in Figure 5. The system has also been equipped 
with a remote bus for maintenance purposes and the ability to 
have a constant ROM for storage of arithmetic constants. The 
ECW for the MPC II is shown in Figure 6 and the instruction 
repertoire in Figure 7. The ECW of MPC I and MPC II are 
similar. They both contain a microcode address; however, the 
MPC II contains an E]O bit to specify even/odd word addressing 
of the rnicrostore. Both MPCs contain a memory operand mode 
control field. In MPC II the DP field is used for general register 
selection. The remaining fields of MPC II provide for format 
sensing (F2, FI), memory enable (M), interim sequence control 
(I), overlap of next instruction readup (0), and unary operation 
designator (U). These functions were basically encoded in the 
control functions of the MPC I ECW. 

The above identified changes were basically determined 
through our experiences building emulators based upon the 
MPC I architecture. The three variations of the MPC II architec- 
ture are due to detailed cost/performance issues involved with 
parts selection to meet specific equipment requirements. 

I I tl S: ElSXlSAI 
SOURCE A 
ADDRESS 

SOURCE X ADDRESS 

SOURCE X ADDRESS QUALIFIER 

INSTRUCTION MODIFIER/QUALIFIER 

DESTINATION ADDRESS 

COMMAND TRIGGER 

EVEN/ODD BRANCH CONTROL 

EMULATION BRANCH CONTROL 

PRIMARY FUNCTION 

OVERALL PARITY ODD 

Figure 4. Basic MPC II Microinstruction Format 
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SOURCE X BUS 

T I SOURCE A BUS 

CONSTANTS MICRO 
SUPPORT 

HARDWARE 

ADDRESS ] L  ? MICR(J 
INSTRUCTION 

CONTROL STORE 
8K x 36 BIT 

MAX 

T 
SCRATCH 

PAD 
ACCUMULATORS 

T 
I 

DESTINATION BUS 

REMOTE BUS 

Figure 5. MPC II Block Diagram 

ARITHMETIC 
LOGIC UNIT 

19 

MEMORY E FIELD 
MODE INTERPRET 

CONTROL 

17 16 15 14 13 12 11 10 9 8 0 

<, ¥ u 

TO MICRO TO UPR 
"B"FIELD BRANCH LOGIC 

TEST 

GRS SELECTION CONTROL AND CONDITION CODE CAPTURE CONTROL 

Figure 6. Emulation Control Word Format 

FUNCTION C O D E  DESCRIPTION MNENOMIC 

00 
01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 

LOAD CONSTANT 
BRANCH 
MICRO CONTROL 
REPEAT 
SHIFT 
TRANSFER REMOTE 
TRANSFER CONTROL STORE 
UNASSIGNED 
ADD 
SUBTRACT 
LOGICAL I 
LOGICAL II 
CONDITIONAL TRANSFER SA 
CONDITIONAL TRANSFER SX 
CONDITIONAL SUM SA 
CONDITIONAL SUM SX 

Figure 7. MPC II Microrepertoire 

LDK 
JP 
MCL 
RPT 
SH 
TX R 
TXC 

ADD 
SUB 

CTA 
CTX 
CSA 
CSX 

CONCLUSION 

The MPC concept has been used extensively. Currently, we 
have emulated 12 different repertoires or alternative perform- 
ance levels of a specific repertoire with the MPC I, two with the 
MPC II, and seven with the MPC III and three with the MPC IV. 
In all, we have produced over 1000 machines which contain an 
emulator based upon the MPC concept. We have emulated 
machines as diverse as the Honeywell DDP-24 (training center 
24-bit word length), the CP890 (shipboard 30-bit word length), 
the SKC 2070 (32-bit word length; airborne radiation hardened 
computer) and the AN/UYK-20 (16-bit word length; shipboard) 
computers. 

We feel that the MPC concept provides a good cost/ 
performance trade-off for the development of real-time archi- 
tecture emulators. The principles upon which the MPC achieves 
its success are primarily involved with the definition and effi- 
• dent use of the emulation adaptor to provide accurate emula- 
tion of complex systems. 
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