
THE MICROPROGRAMMED CONTROLLER CONCEPT

Kenneth J. Thurber 1,2
and

Glen R. Kregness I

ABSTRACT

This paper describes the MPC (Microprogrammed Controller) Concept used at Sperry Univac Defense Systems Division
to implement real-time computer emulations. It discusses the concept and reasons for microprogrammed emulation and the
basic MPC approach. Enhancements developed for the MPC and their impact are also discussed.

INTRODUCTION

Microprogramming has been a control logic implementa-
tion technique that conceptually has been available to designers
since it was first introduced by Wilkes in the early 50's.[1]
However, it was not until the mid-60's when the technique
became popular and in widespread use.J2]

Emulation of one computer system by another computer
system conceptually has also been a designer's tool for many
years. Some "emulators" are hardwired copies of early ma-
chines.[3] Other emulators consist of "software packages"
which simulate a specific computer system.[4]

Recently, the use of microprogramming techniques to
implement an emulation of an alternative computer system has
been a prevelant emulation technique. [5,6,7,8,9,10] This paper
discusses the concept, evolution, and use of the MPC
(Microprogrammed Controller) concept used at Sperry Univac
Defense Systems to implement computer emulations.

microprogramming (non-coded microinstructions), hybrid
schemes (using two levels of microcode: one vertical and one
horizontal), and various combinations of the above techniques.
The MPC can be viewed as a vertically microprogrammed
machine with the ability to call horizontally encoded subrou-
tines which are supported by easily tailorable hardware. This
concept is at the same time elegant, yet very hardware cost
effective.

WHY MICROPROGRAMMING?

Microprogramming is a technique for implementation of
the control logic of a digital system. Digital systems are made
up of registers and networks interconnected to perform a given
function. In hardwired machines, some registers are addressable
because they may be directly specified in an instruction.
Adders, shift networks, and data busses are not generally con-
trolled by an instruction. The assembly language programmer
may not even be aware that this hardware exists.

To date, this concept has been applied to, and emulators
built for, over 20 alternative repertoires or alternative perform-
ance levels of a specific repertoire (ranging from the
AN/UYK-20(V) to the Honeywell DDP-24). For any given
repertoire we have produced a variable number of machines. In
some cases, we have built only one copy of a specific emulator;
in other cases, we have produced over 700 copies of a specific
emulator.

In the literature, various designers have argued for vertical
microprogramming (encoded microinstructions), horizontal

Microprogramming normally treats all registers and net-
works as addressable within the microinstruction format. The
control logic therefore becomes the microinstruction sequence.
Timing is controlled by microinstruction sequences.

Microprogramming must be intimately concerned with the
digital hardware to be efficient. The microinstruction format
will be heavily influenced by currently available semiconductor
integrated circuits or the design of custom semiconductor
devices.

Sperry Univac
St. Paul, Minnesota

2 Computer Science Department
University of Minnesota
Minneapolis, Minnesota

Emulation becomes the process of writing a microprogram
which, when run on a microprogrammed computer, produces
the same results as the original machine. Generally, most
authors ignore timing issues when discussing emulation. How-
ever, in a real-time environment, timing considerations must
also be considered.

358

There are a number of advantages to implementing an
emulator using microprogramming:

1) flexibility,
2) ease of alteration,
3) provides a basic building block which can be altered

to emulate other computers,
4) simplifies logistics,
5) lower recurring and nonrecurring costs,
6) can take advantage of semiconductor advances, and
7) shorter development time.

Classical microprogramming (horizontal: non-encoded)
usually dedicates bits in the instruction for direct control over
registers and logic networks; e.g., a register having parallel load
capability would have a bit within the instruction word reserved
for controlling this specific function. This approach generally
leads to wide microinstructions.

Firmware microprogramming (vertical: encoded), on the
other hand, takes the opposite approach; i.e., functions are
encoded. The firmware approach closely resembles conventional
hardwired design techniques. A "narrow" instruction word is
implemented with encoded fields in the microinstruction
assigned to specific functions; e.g., Load, Add, Subtract, or
Shift. In fact, many classical microprogramming people do not
consider firware as a microprogramming approach at all, but
rather an extremely simple computer. The hybrid approach
combines the two approaches for memory and execution effi-
ciency with one vertical microinstruction pointing to one or
more horizontal microinstructions.

The main advantages of vertical microprogramming are:

1) efficiency of micromemory use (low cost)
2) only useful functions are available,
3) ease of programming, and
4) ease of software-support tool generation.

The main advantages of horizontal microprogramming are:

1) parallelism,
2) high performance, and
3) low number of instructions necessary to emulate

another computer's instruction.

The hybrid approach leads to the advantages of both verti-
cal and horizontal schemes.

Further, it is possible that a single microprogrammed con-
troller can emulate many different architectures with suitable
microcode changes.

THE MPC CONCEPT

The concept of the MPC (Figure 1) is quite simple. It
revolves around a standard building block: the Micropro-
grammed Controller. The MPC (Figure l, Figure 2, Table 1) is
used in the AN/UYK-20. This is a simple, vertically encoded,
register-oriented machine. This provides the advantages of low
cost and flexibility. Specific microinstructions can point to a
second-level microinstruction, which is analogous to an instruc-
tion which acts as a nanoinstruction would act; however, it acts

SOURCE BUS

T L
LOGIC [[~INSTR UCTION~t-~ REGISTER

EMU TION
I II CONTROL MICRO [~IIWORDMEMORY SCRATCH MICRO MEMORY ~ (SPECIAL

PAD CONTROL REGISTERS (VERTICAL I]]HORIZONTALLY
WORDS) [Ill TYPE WORDS)

T DESTINATION I I BUS
' 1"

MICROPROGRAMMED CONTROLLER I
. L

INPUT t OUTPUT MEMORY
CONTROL

T T
STATUS I NTE R FACE

REGISTERS

T
"GENERAL] PROGRAM]
REGISTERS COUNTER

T
EMULATION ADAPTER

Figure 1. Functional Architecture

359

15 14 13 12 11 10

M I O U

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 I

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

8 7 6 5 4 3 2 1 0 I
EMULATION POINTER ADDRESS ONE'S COMPLEMENT

CONTROL FUNCTION FROM EB1 OR EB2 (EMULATE BRANCH 1 OR 2)**

RR UNARY -- MODIFY ECW POINTER BITS 4 - 1 BY M* - NO OVERLAP** *

RR NO OVERLAP

RR UNARY -- MODIFY ECW POINTER BITS 4 - 1 BY M* - OVERLAP

RR OVERLAP

RK UNARY - MODIFY ECW POINTER BITS 4 -1 BY M* - NO OVERLAP -

BRANCH 1 TO INTERIM SEQUENCE

RK NO OVERLAP - BRANCH 1 TO INTERIM SEQUENCE

RK UNARY - MODIFY ECW POINTER BITS 4 -1 BY M* - OVERLAP -

BRANCH 1 TO INTERIM SEQUENCE

RK OVERLAP - BRANCH 1 TO INTERIM SEQUENCE

RI INHIBIT NEXT INSTRUCTION WRITE

RI ENABLE NEXT INSTRUCTION WRITE

UNDEFINED

UNDEFINED

RX INHIBIT NEXT INSTRUCTION WRITE - BRANCH 1 TO INTERIM SEQUENCE

RX ENABLE NEXT INSTRUCTION WRITE -- BRANCH 1 TO INTERIM SEQUENCE

RX INHIBIT INDEXING - INHIBIT NEXT INSTRUCTION WRITE - BRANCH 1

TO INTERIM SEQUENCE

RX INHIBIT INDEXING - ENABLE NEXT INSTRUCTION WRITE - BRANCH 1

,TO INTERIM SEQUENCE

OPERAND MEMORY MODE

READ (FULL WORD)

WRITE (FULL WORD)

READ ODD WORD

WRITE ODD WORD

SPLIT CYCLE (i.e., READ, MODIFY, WRITE)

WRITE 0

READ THE BYTE SPECIFIED BY BIT 15 OF THE CONDITION REGISTER

WRITE THE BYTE SPECIFIED BY BIT 15 OF THE CONDITION REGISTER

*M ~ ONE'S COMPLEMENT OF M

**EB1 AND EB2 CONTROL ACCESS TO

INTERIM ROUTINES

* * *RR, RK, RI, RX ARE INSTRUCTION

ADDRESS FORMATS

Figure 2. Emulator Control Word

more like a subroutine. Further, this second-level instruction
has as its goal the performance of the functions which are speci-
fic and unique to an architecture which is being emulated. For
this reason, this portion of the machine is known as the emula-
tion adaptor. Some functions of the emulation adaptor may be
hardwired. Typical functions performed by the emulation
adaptor include format decomposition, status setting, control,
and interpretation, operand fetch according to memory mode
designation, etc. The emulation adaptor could be 1) built from
programmable logic, 2) built as a MPC with tailored firmware,
etc. We have chosen (to date) to build our emulation adaptors
from hardware due to speed considerations and the fact that
generally we are attempting to emulate only a single architec-
ture.

The microinstruction repertoire is given in Table 1. The
ECW (emulation control word) format is shown in Figure 2 (for
the AN/UYK-20). The emulate microcommand causes an ECW
to be read and its specified conditions to be met. Thus, the
sequence of events is:

<Jnstruction>
is fetched and interpreted by

<User>

<Emulation Adaptor> <Emulation Tailoring>
provided for emulation by hardware design-
er uses "interim sequences" to decompose
the instruction, fetch operands, and pre-
pare the instruction for transmittal to the
MPC for execution

<~dPC> <Register Oriented Machine>
programmed by microcode (hardware)
designer to act upon data placed into MPC
scratch pad registers by the emulation
adaptor

<Result> <User>
answer from scratch pad registers is placed
into appropriate positions in emulation
adaptor

The interim sequences are sequences (possible hardwired)
which provide for operand fetch, format decomposition, etc.
Obviously, the most efficient design will minimize the changes
required to an emulation adaptor to change it from an
emulator of machine A to emulation of machine B.

360

Further, the ECW may be viewed as either:

1) A horizontal microinstruct ion,
2) An extension of the vertical microinstruct ion, or
3) A hardwired interrupt-oriented aid to the vertical

microinstruct ion which calls in the emulat ion adaptor
hardware to perform emulat ion specific functions.

Table 1. Microinstruction Repertoire

Instruction Format

15-12 11-8 7 - 4

Description

3 - 0

F = 00 D S M

F = 0 1 X

F =02

F =03

F = 0 4

F = 0 5

F = 06

F = 07

F = I 0

F = I 1

F= 12

F = 1 3

F = 1 4

F = 1 5

F = t 6

F = 1 7

S M

S M

S M

S M

S M

S M

K

K

K

D [K

FII K

S [M Fll

FII K

D S [M
I

Transfer

Unconditional
Branch

Add $2

Shift

Add SI

Subtract

Logic 1

Logic II __ __

Add Constant

Subtract Constant

Transfer
Constant to DI

Transfer
Constant to D2

Branch

Micro Control

Micro Repeat

Emulate

Definition of fields

F Function code
FII Subfunction code
D Destination designator field
S Source designator
X Branch address designator
M Sub-function or modifier designator
K Constant 8-bit absolute value or subfunction code

Al though it is possible to make the emulat ion adaptor and
the MPC micromemory accessible to the user, to date we have
not provided this capability in our machines since the ECW and
micromemory are built from read-only memories.

The previous discussion assumes no overlap o f micro-
instructions or parallelism in the MPC. In the MPC If, for
example, the microinstruct ions are executed in a three-stage
pipeline. Further, the "emula te s tar t" command is the "last
ins t ruct ion" o f a macro and it causes the nex t macro to be read
and its interim sequences to be started. Thus in general the
microcode for a typical macroinstruet ion takes the form:

1) Interim Sequences
(i f any : spec i f i ed by EB1, EB2)

2) Vertical Microcode
3) Emulate Start

(fetches nex t macro)

parse instructions:
obtain operands
execution
start n e x t m a c r o

M P C E N H A N C E M E N T S

Since the development o f MPC I we have developed an
enhanced version o f the MPC (known as MPC II). In addition,
LSI versions o f the MPC II (MPC Ill and MPC IV) are

available. The MPC II instruct ion format has some minor modi-
fications made to it to obtain the MPC III and MPC IV architec-
tures. MPC IV and MPC II are identical (functionally) al though
the hardware structure is different. MPC III has more bits in the
F and M (funct ion and funct ion modifier) fields due to the
necessity to provide more funct ion bits to control the AMD
2901 chip. The characteristics o f these MPCs are summarized in
Figure 3. The enhancements made to MPC I were based upon
considerable analysis work which is summarized in the follow-
ing paragraphs.

The emulat ion adaptor concept is the primary feature
which has yielded a decided performance edge to the MPC in
contrast to other emulat ion approaches. The emulat ion adaptor
is an address generator which converts the MPC into an inter-
rupt-driven system. Its primary funct ion is to dynamically
moni tor the emulated machine state and produce starting
addresses o f microinstruct ion subrout ines which implement the
desired functions.

NUMBER OF BUSES
NUMBER OF MICROINSTRUCTIONS
MICROINSTRUCTION LENGTH (BITS)
CONTROL STORE TYPE
MAXIMUM CONTROL STORE SIZE
MICRO-NESTING LEVELS
ARITHMETIC TYPES
HARDWARE REQUIRED
CIRCUITS USED

MPC I MPC II MPC III MPC IV

2 4 3(2) 3
16 16 16 16
16 36 40 36

ROM ROM/RAM ROM/RAM ROM/RAM
4 K X 16 4 K X 7 2 4 K X 8 0 4 K X 7 2

1 4 4 4
2'S, I 'S 2'S, 1'S 2'S, 1 'S 2'S, 1 'S

REFERENCE SAME AS MPC I 2/3 MPC 2/3 MPC
GENERAL GENERAL AMD 2901, PLA'S,

TTL ECL 10K AMD 2909, LS 181 ALU
LSTTL PARTS SLICE, AMD 2909,

AMD 2914,
LSTTL PARTS

Figure 3. MPC Attr ibutes

361

In the MPC, the emulation adaptor is probed by means of
a special microinstruction which serves as a trigger to generate
the address of the next routine to be entered. This particular
function is not totally unique to the MPC; however, few
machines carry this function to the extent that the MPC does.
One feature of the MPC which is unique is the supplementary
control which is supplied by the emulation adaptor. Such things
as main memory cycle modes, interim-sequencing and address-
generation characteristics, general register selection, macro-
i n s t ruc t i on overlapping, and condition code setting are
accomplished and interpreted through the emulation adaptor.
In effect, the emulate instruction temporarily transfers machine
control to the emulation adaptor which then issues control sig-
nals to the rest of the machine in addition to supplying the
branch address of the next microinstruction routine.

The major improvements incorporated into the MPC II
reflect the extensive use of the emulate instruction, which is
deleted as a special instruction and encoded as a field in every
microinstruction, as well as the addition of facilities to relieve
the following limiting characteristics of MPC I:

1) limited register addressing
2) limited accumulator selection
3) limited conditional branch capability
4) difficulty of introducing constants
5) lack of parallel control capability.

The main differences between MPC II, MPC III, and MPC
IV and MPC I can be seen by examining the MPC II instruction
format (Figure 4) and the MPC I instruction format (Table 1).
Both machines have function (f) and function modifier capabili-
ties (M). The instruction repertoires (Figure 4 and Table 1)
differ mainly in that the emulate command (MPC I) has become

a field in the MPC II (E-field). Further, the MPC II has added
instruction parity (P) and an overlapped even/odd microinstruc-
tion branch capability (B). The B Field allows the microcontrol
store to be viewed as 4K x 32-bits or 8K x 36 bits, and this
feature can be exploited in microinstruction branching during
overlapped operations. A trigger field (T) was also added so that
specific conditions and/or functions can be programmed for use
in obtaining microinstruction parallelism; e.g., it is conceivable
to initiate memory during an add microinstruction. An addi-
tional source bus (SX) and a qualifier (SXE) were added to MPC
II for flexibility reasons. Additionally, a number of microsub-
routine nesting levels were added to MPC I to facilitate more
efficient microprogramming. The resulting MPC II block dia-
gram is shown in Figure 5. The system has also been equipped
with a remote bus for maintenance purposes and the ability to
have a constant ROM for storage of arithmetic constants. The
ECW for the MPC II is shown in Figure 6 and the instruction
repertoire in Figure 7. The ECW of MPC I and MPC II are
similar. They both contain a microcode address; however, the
MPC II contains an E]O bit to specify even/odd word addressing
of the rnicrostore. Both MPCs contain a memory operand mode
control field. In MPC II the DP field is used for general register
selection. The remaining fields of MPC II provide for format
sensing (F2, FI), memory enable (M), interim sequence control
(I), overlap of next instruction readup (0), and unary operation
designator (U). These functions were basically encoded in the
control functions of the MPC I ECW.

The above identified changes were basically determined
through our experiences building emulators based upon the
MPC I architecture. The three variations of the MPC II architec-
ture are due to detailed cost/performance issues involved with
parts selection to meet specific equipment requirements.

I I tl S: ElSXlSAI
SOURCE A
ADDRESS

SOURCE X ADDRESS

SOURCE X ADDRESS QUALIFIER

INSTRUCTION MODIFIER/QUALIFIER

DESTINATION ADDRESS

COMMAND TRIGGER

EVEN/ODD BRANCH CONTROL

EMULATION BRANCH CONTROL

PRIMARY FUNCTION

OVERALL PARITY ODD

Figure 4. Basic MPC II Microinstruction Format

36~

SOURCE X BUS

T I SOURCE A BUS

CONSTANTS MICRO
SUPPORT

HARDWARE

ADDRESS] L ? MICR(J
INSTRUCTION

CONTROL STORE
8K x 36 BIT

MAX

T
SCRATCH

PAD
ACCUMULATORS

T
I

DESTINATION BUS

REMOTE BUS

Figure 5. MPC II Block Diagram

ARITHMETIC
LOGIC UNIT

19

MEMORY E FIELD
MODE INTERPRET

CONTROL

17 16 15 14 13 12 11 10 9 8 0

<, ¥ u

TO MICRO TO UPR
"B"FIELD BRANCH LOGIC

TEST

GRS SELECTION CONTROL AND CONDITION CODE CAPTURE CONTROL

Figure 6. Emulation Control Word Format

FUNCTION C O D E DESCRIPTION MNENOMIC

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

LOAD CONSTANT
BRANCH
MICRO CONTROL
REPEAT
SHIFT
TRANSFER REMOTE
TRANSFER CONTROL STORE
UNASSIGNED
ADD
SUBTRACT
LOGICAL I
LOGICAL II
CONDITIONAL TRANSFER SA
CONDITIONAL TRANSFER SX
CONDITIONAL SUM SA
CONDITIONAL SUM SX

Figure 7. MPC II Microrepertoire

LDK
JP
MCL
RPT
SH
TX R
TXC

ADD
SUB

CTA
CTX
CSA
CSX

CONCLUSION

The MPC concept has been used extensively. Currently, we
have emulated 12 different repertoires or alternative perform-
ance levels of a specific repertoire with the MPC I, two with the
MPC II, and seven with the MPC III and three with the MPC IV.
In all, we have produced over 1000 machines which contain an
emulator based upon the MPC concept. We have emulated
machines as diverse as the Honeywell DDP-24 (training center
24-bit word length), the CP890 (shipboard 30-bit word length),
the SKC 2070 (32-bit word length; airborne radiation hardened
computer) and the AN/UYK-20 (16-bit word length; shipboard)
computers.

We feel that the MPC concept provides a good cost/
performance trade-off for the development of real-time archi-
tecture emulators. The principles upon which the MPC achieves
its success are primarily involved with the definition and effi-
• dent use of the emulation adaptor to provide accurate emula-
tion of complex systems.

363

REFERENCES

[1] M. V. Wilkes, "The Best Way to Design an Automatic Calcu-
lating Machine," Manchester University Computer Inaugural
Conference, Ferranti Ltd., London, England, 1951, pp.
16-21.

[2]M. A. McCormack, et al., "1401 Compatibility Feature on
the IBM System/360 Model 30," CACM, August 1965.

[3] Sperry Univac, "Univac 1832, Avionics Computer (Single
and Multiprocessor), General Description" (Univac PX
5627A).

[41 R. I. Benjamin, "The Spectra 70/45 Emulator for the RCA
301 ," CA CM, December 1965.

[5] Sperry Univac, "AN/UYK-20: Technical Description"
(Univac PX 10431C), November 1976.

[6] W. T. Wilner, "Microprogramming Environment on the Bur-
roughs B 1700," COMPCON '72.

[7] Nanodata Corporation, "QM-1 Hardware Level User's Man-
ual," 1976.

[8]Control Data Corporation, "Control Data 5600 Series of
Microprogrammable Processors: Reference Manual," 1972.

[9] C. Neuhauser, "An Emulation ORIENTED Dynamic Micro-
programmable Processor (Version 3)," Stanford University.

[10]C. V. Ramamoorthy, "A Survey of the Status of
Microprogramming," Advances in Information Sciences
(ed. J. T. Tou), Volume 5, 1974.

36k

